實(shí)用新型提供了一種BMS電池管理系統(tǒng)的遠(yuǎn)程監(jiān)控系統(tǒng),包括主控制終端、Server服務(wù)器端、移動客戶終端以及多個BMS電池管理系統(tǒng)單元,所述主控制終端和移動客戶終端均通過通信網(wǎng)絡(luò)與Server服務(wù)器端連接。BMS電池管理系統(tǒng)單元包括BMS電池管理系統(tǒng)、控制模組、顯示模組、無線通信模組、電氣設(shè)備、用于為電氣設(shè)備供電的電池組以及用于采集電池組的電池信息的采集模組,所述BMS電池管理系統(tǒng)通過通信接口分別與無線通信模組及顯示模組連接,所述采集模組的輸出端與BMS電池管理系統(tǒng)的輸入端連接,所述BMS電池管理系統(tǒng)的輸出端與控制模組的輸入端連接,所述控制模組分別與電池組及電氣設(shè)備連接,所述BMS電池管理系統(tǒng)通過無線通信模塊與Server服務(wù)器端連接。安全性能等潛在的缺陷給判斷鋰離子電池是否合格帶來困難。專業(yè)BMS電池管理控制系統(tǒng)架構(gòu)
不同放電工況下電池的能量損失不同,因此只有預(yù)測某一特定功率需求下的電池電壓響應(yīng)過程,才能獲得準(zhǔn)確的RE預(yù)測值。由于鋰離子電池的特點(diǎn),其電壓輸出受到很多變量的影響,如當(dāng)前SOC、溫度、衰減程度SOH,因此在能量預(yù)測過程中除傳統(tǒng)的SOC 估計(jì)模型外,還需要一個專門的電壓預(yù)測模型。該方法基于當(dāng)前的電池狀態(tài)和未來的電流輸入,根據(jù)電池模型對未來放電過程的電壓變化進(jìn)行預(yù)測,并計(jì)算放電過程中的累積能量。預(yù)測過程中,根據(jù)當(dāng)前的電壓、電流測量值對模型參數(shù)進(jìn)行修正,對端電壓序列與RE 的預(yù)測結(jié)果進(jìn)行更新。河北BMS電池管理測試系統(tǒng)企業(yè)BMS電池管理系統(tǒng)單元包括控制模組、顯示模組、無線通信模組、電氣設(shè)備、電池組、采集模組。
現(xiàn)行的主要標(biāo)準(zhǔn)可概括為以下幾類。1主要針對運(yùn)輸過程中的外部環(huán)境和機(jī)械振動如UN38. 3、IEC 62281:2012 等,通過高度模擬、溫度試驗(yàn)、振動、沖擊、外短路和撞擊等測試項(xiàng)目,模擬鋰離子電池在運(yùn)輸過程中可能發(fā)生的危險(xiǎn),對于鋰離子電池在使用過程中的安全問題涉及較少 。2 主要針對設(shè)計(jì)和制造過程如IEEE1625、IEEE1725 等。以IEEE1725 為例,標(biāo)準(zhǔn)將手機(jī)鋰離子電池系統(tǒng)分為4 個板塊,即電芯、電池組、主機(jī)及電池充電器部分,整體明確地對電芯的設(shè)計(jì)、原材料、制造工藝和成品測試評估等進(jìn)行了要求,為電芯乃至手機(jī)等通信產(chǎn)品的安全性提供可靠評估保障。上述標(biāo)準(zhǔn)主要針對電池的設(shè)計(jì)和制造過程,對于鋰離子電池后期使用中的安全問題涉及不多。且諸如此類的IEEE 鋰離子電池標(biāo)準(zhǔn),由于對象為不同設(shè)備中的鋰離子電池的設(shè)計(jì)和制造,針對性較強(qiáng),適用范圍受到一定的限制。
實(shí)用新型公開了一種BMS電池管理系統(tǒng)的遠(yuǎn)程監(jiān)控系統(tǒng),包括主控制終端、Server服務(wù)器端、移動客戶終端以及多個BMS電池管理系統(tǒng)單元,主控制終端和移動客戶終端均與Server服務(wù)器端連接;BMS電池管理系統(tǒng)單元包括BMS電池管理系統(tǒng)、控制模組、顯示模組、無線通信模組、電氣設(shè)備、電池組以及采集模組,采集模組的輸出端與BMS電池管理系統(tǒng)的輸入端連接,BMS電池管理系統(tǒng)的輸出端與控制模組的輸入端連接,控制模組分別與電池組及電氣設(shè)備連接。實(shí)用新型可實(shí)現(xiàn)對BMS電池管理系統(tǒng)的實(shí)時的遠(yuǎn)程監(jiān)控,無需現(xiàn)場進(jìn)行檢測,減輕了電池組的維護(hù)難度,充分節(jié)省了人力資源、時間與生產(chǎn)成本,可普遍應(yīng)用于電池組的監(jiān)控領(lǐng)域中 。相比較于去使用一個真實(shí)的電池進(jìn)行測試,通過模擬電池特性去測試電池有著非常多的好處。
對于混合動力車電池,由于工況復(fù)雜,運(yùn)行中為了維持電量不變,電流有充有放;停車時除了維護(hù)外,沒有站上充電的機(jī)會;電池容量較小,安時積分的相對誤差大。因此,簡單的開路電壓修正方法還不能滿足混合動力車電池SOC 的估計(jì)精度要求,需要其他融合方法解決。加權(quán)融合算法是將不同方法得到的SOC 按一定權(quán)值進(jìn)行加權(quán)估計(jì)的方法。Mark Verbrugge等采用安時積分獲得SOCc與采用具有滯回的一階RC模型獲得SOCv的加權(quán)方法估計(jì)SOC,卡爾曼濾波是一種常用的融合算法。由于SOC不能直接測量,目前一般將兩種估計(jì)SOC 的方法融合起來估計(jì)。SOC被當(dāng)成電池系統(tǒng)的一個內(nèi)部狀態(tài)分析。電池管理系統(tǒng)在電池和汽車的運(yùn)行中起到實(shí)時監(jiān)測電池狀態(tài)的作用。專注BMS電池管理監(jiān)控系統(tǒng)功能介紹
BMS電池管理系統(tǒng)功能:單體電池間的能量均衡。專業(yè)BMS電池管理控制系統(tǒng)架構(gòu)
鋰離子電池安全工作區(qū)域受到溫度、電壓窗口限制,超過該窗口的范圍,電池性能就會加速衰減,甚至發(fā)生安全問題。電池管理系統(tǒng)的主要任務(wù)是保證電池系統(tǒng)的設(shè)計(jì)性能,可以分解成如下三個方面:1)安全性,保護(hù)電池單體或電池組免受損壞,防止出現(xiàn)安全事故;2)耐久性,使電池工作在可靠的安全區(qū)域內(nèi),延長電池的使用壽命;3)動力性,維持電池工作在滿足車輛要求的狀態(tài)下。對于具有數(shù)百個電池單元的電池系統(tǒng),可能有一個主控制器和多個只管理一個電池模塊的從屬控制器。專業(yè)BMS電池管理控制系統(tǒng)架構(gòu)