故障診斷可以使系統(tǒng)在一定工作環(huán)境下根據狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導致系統(tǒng)某種功能失調的原因或性質,判斷劣化發(fā)生的部位或部件,以及預測狀態(tài)劣化的發(fā)展趨勢等。
電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監(jiān)測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。 工業(yè)監(jiān)測系統(tǒng)可以實時監(jiān)測生產線的運行狀態(tài)。旋轉機械監(jiān)測系統(tǒng)供應商
從整體的網絡架構來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設備上傳感器節(jié)點獲取設備的健康狀態(tài)監(jiān)測信號和運行參數數據,經網絡層集中上傳至設備健康監(jiān)測物聯網綜合管理平臺,實現數據傳輸。應用層實現監(jiān)測信號的分析?故障特征提取?故障診斷及預測功能,實現智能化管理?應用和服務。設備健康監(jiān)測物聯網綜合管理平臺具有強大的數據采集分析處理?數據可視?設備運維?故障診斷?故障報警等功能。通過實時監(jiān)測查看?統(tǒng)計?追溯,實現對其管轄設備的實時監(jiān)測和運行維護,基于運行信息和檢修信息?自動生成設備管理報表,實現設備可靠性?故障數據?更換備件等信息統(tǒng)計,為維修方案提供依據。溫州非標監(jiān)測控制策略監(jiān)測結果的比較可以幫助我們評估不同銷售渠道的效果和效益。
故障預測與健康管理是以工業(yè)監(jiān)測數據為基礎,通過高等數學、數學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,**終實現產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數據為基礎,通過高等數學、數學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數學框架以及準算數均值比數學框架指引了稀疏測度構造的新方向,同時發(fā)現了大量與基尼指數、峭度等具有等價性能的稀疏測度?;跇藴驶椒桨j和數學框架以及凸優(yōu)化技術,提出了在線更新模型權重可解釋的機器學習算法,
可以利用模型權重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數據挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數、模式及準則。如表征設備狀態(tài)發(fā)展的參數及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據及判據等。物聯網聲學監(jiān)控系統(tǒng),輔以其他設備參數,通過物聯網技術實現設備狀態(tài)的遠程感知,基于AI神經網絡技術,計算并提取設備音頻特征,從而實現設備運行狀態(tài)實時評估與故障的早期識別。幫助企業(yè)用戶提升生產效率,保證生產安全,優(yōu)化生產決策。工業(yè)監(jiān)測技術可以幫助企業(yè)保障員工安全和健康。
針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經網絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數據作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現自學習,不斷提升模型的精度和預測效果。監(jiān)測工作需要關注市場的人口結構和消費習慣,以了解市場需求的變化。溫州電力監(jiān)測介紹
工業(yè)監(jiān)測數據可以幫助企業(yè)優(yōu)化生產流程和降低成本。旋轉機械監(jiān)測系統(tǒng)供應商
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現查看設備是否需要維護、安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。電動機是機械加工中不可或缺的必備工具,電動機在運轉中常產生各種故障,為保證電動機運行安全,對電動機運行狀態(tài)進行在線監(jiān)測尤為重要。以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(振動、噪聲、轉速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構成特征向量,采用BP神經網絡訓練的方法建立狀態(tài)識別模型,通過BP神經網絡模式識別方法,判斷電動機運行的狀態(tài),在此基礎上,利用LabVIEW軟件構建可視化監(jiān)測系統(tǒng),將電動機運行參數及狀態(tài)實時顯示在可視化界面中,完成在線智能監(jiān)測。旋轉機械監(jiān)測系統(tǒng)供應商