在生物醫(yī)藥領(lǐng)域,體外蛋白表達(dá)技術(shù)主要服務(wù)于三大方向:診斷試劑開發(fā): 通過(guò)凍干裂解物與靶標(biāo)基因預(yù)裝系統(tǒng),實(shí)現(xiàn)傳染xing bing原體抗原的現(xiàn)場(chǎng)即時(shí)合成與檢測(cè);蛋白質(zhì)工程優(yōu)化: 構(gòu)建突變體文庫(kù)并并行表達(dá)篩選,快速獲得熱穩(wěn)定性/催化效率提升的酶變體;藥物靶點(diǎn)驗(yàn)證: 表達(dá)跨膜受體等復(fù)雜蛋白,用于配體結(jié)合實(shí)驗(yàn)及抑制劑高通量篩選;合成生物學(xué)元件構(gòu)建: 作為人工合成細(xì)胞的he xin模塊,驅(qū)動(dòng)無(wú)細(xì)胞基因回路實(shí)現(xiàn)自我維持的蛋白表達(dá)。該技術(shù)明顯加速了從基因序列到功能蛋白質(zhì)的研究轉(zhuǎn)化周期。PCR純化后的線性DNA模板可直接用于??大腸桿菌體外蛋白表達(dá)??。無(wú)細(xì)胞蛋白表達(dá)注意事項(xiàng)
無(wú)細(xì)胞蛋白表達(dá)技術(shù)(CFPS)正在徹底改變合成生物學(xué)、生物技術(shù)和藥物開發(fā)等關(guān)鍵領(lǐng)域,它通過(guò)突破傳統(tǒng)大腸桿菌(E. coli)等細(xì)胞表達(dá)系統(tǒng)的固有局限,實(shí)現(xiàn)了三大he xin優(yōu)勢(shì):更快的生產(chǎn)周期更靈活的合成條件調(diào)控;可表達(dá)毒性蛋白或體內(nèi)難以合成的復(fù)雜結(jié)構(gòu)蛋白;這使得CFPS成為zhi liao性蛋白開發(fā)、功能基因組學(xué)和高通量蛋白質(zhì)篩選不可或缺的工具。由于擺脫了細(xì)胞代謝的束縛,CFPS可實(shí)時(shí)優(yōu)化反應(yīng)條件,從而明顯提升蛋白產(chǎn)量并優(yōu)化生產(chǎn)效率。重組蛋白表達(dá)優(yōu)化添加 0.1% Triton X-100 使疏水蛋白的體外表達(dá)可溶率達(dá)90%??。
前沿高校和研究所是無(wú)細(xì)胞蛋白表達(dá)技術(shù)創(chuàng)新的源頭。哈佛大學(xué)George Church實(shí)驗(yàn)室開發(fā)的"全基因組裂解物"技術(shù),明顯提升了復(fù)雜途徑的體外重構(gòu)能力;東京大學(xué)則通過(guò)微流控-無(wú)細(xì)胞蛋白表達(dá)技術(shù)聯(lián)用系統(tǒng),推動(dòng)單細(xì)胞蛋白組學(xué)研究。值得注意的是,合成生物學(xué)公司(如Ginkgo Bioworks、Zymergen)正將無(wú)細(xì)胞蛋白表達(dá)技術(shù)納入其自動(dòng)化生物鑄造平臺(tái),用于高通量酶進(jìn)化。而傳統(tǒng)發(fā)酵技術(shù)公司(如DSM)也開始布局無(wú)細(xì)胞蛋白表達(dá)技術(shù),探索其在可持續(xù)蛋白(如無(wú)細(xì)胞合成乳清蛋白)中的應(yīng)用,預(yù)示著技術(shù)融合的跨界競(jìng)爭(zhēng)趨勢(shì)。
無(wú)細(xì)胞蛋白表達(dá)技術(shù)CFPS的開放體系特性使其對(duì)實(shí)驗(yàn)環(huán)境極為敏感。裂解物中的酶活性會(huì)隨凍融次數(shù)下降,需分裝保存并避免反復(fù)凍融;反應(yīng)中核酸酶殘留可能導(dǎo)致模板降解,常需額外添加抑制劑(如RNasin)。此外,不同批次的裂解物活性可能存在差異,導(dǎo)致實(shí)驗(yàn)結(jié)果難以重復(fù)。例如,某研究組發(fā)現(xiàn)同一模板在連續(xù)三次實(shí)驗(yàn)中蛋白產(chǎn)量波動(dòng)達(dá)30%,后來(lái)通過(guò)標(biāo)準(zhǔn)化裂解物制備流程(如固定細(xì)胞生長(zhǎng)OD值)才解決該問(wèn)題。這些細(xì)節(jié)要求使得CFPS的操作容錯(cuò)率較低。芯片級(jí)體外蛋白表達(dá)平臺(tái)在個(gè)性化醫(yī)療中尤為關(guān)鍵,能夠?yàn)閏ancer患者快速篩選驅(qū)動(dòng)突變的體外蛋白表達(dá)產(chǎn)物。
體外蛋白表達(dá)系統(tǒng)的明顯缺陷在于 缺乏真核細(xì)胞器結(jié)構(gòu),導(dǎo)致關(guān)鍵翻譯后修飾難以實(shí)現(xiàn):糖基化不完整性: 裂解物中缺乏高爾基體轉(zhuǎn)運(yùn)機(jī)制,只能生成高甘露糖型等簡(jiǎn)單糖鏈,無(wú)法合成復(fù)雜雙觸角N-糖;磷酸化/乙?;Ш猓?激酶/磷酸酶網(wǎng)絡(luò)不完整,使信號(hào)通路蛋白的修飾狀態(tài)與生理?xiàng)l件差異明顯;二硫鍵錯(cuò)配風(fēng)險(xiǎn): 氧化還原環(huán)境調(diào)控不足導(dǎo)致多二硫鍵蛋白錯(cuò)誤折疊率升高。這些局限使體外蛋白表達(dá)在 zhi liao性抗體等需精確修飾的蛋白生產(chǎn)中應(yīng)用受限。例如HIV蛋白酶在通過(guò)體外蛋白表達(dá)后仍切割底物蛋白,但其毒性被限制在封閉體系內(nèi)。低溫誘導(dǎo)蛋白表達(dá)陰性
通過(guò)體外蛋白表達(dá),只需在裂解物中添加對(duì)應(yīng)mRNA,就能在裂解物中安全實(shí)現(xiàn)dusu合成及機(jī)制研究。無(wú)細(xì)胞蛋白表達(dá)注意事項(xiàng)
無(wú)細(xì)胞蛋白表達(dá)技術(shù)在快速響應(yīng)公共衛(wèi)生事件和jun shi應(yīng)用中表現(xiàn)突出。例如,在COVID-19期間,無(wú)細(xì)胞蛋白表達(dá)技術(shù)被用于數(shù)小時(shí)內(nèi)合成病毒抗原,加速疫苗候選物篩選。美國(guó)DARPA支持的“生物制造”項(xiàng)目利用凍干無(wú)細(xì)胞蛋白表達(dá)技術(shù)試劑,在戰(zhàn)場(chǎng)環(huán)境中按需生產(chǎn)止血蛋白或抗體,實(shí)現(xiàn)便攜式、無(wú)需冷鏈的即時(shí)生物制造。這類場(chǎng)景凸顯了無(wú)細(xì)胞蛋白表達(dá)技術(shù)在時(shí)效性和環(huán)境適應(yīng)性上的不可替代性。根據(jù)應(yīng)用需求,無(wú)細(xì)胞蛋白表達(dá)技術(shù)可整合非天然氨基酸(通過(guò)修飾tRNA)、脂質(zhì)體(用于膜蛋白表達(dá))或翻譯后修飾酶(如糖基化酶)。無(wú)細(xì)胞蛋白表達(dá)注意事項(xiàng)