作為國家高新技術企業(yè),博厚新材料在鎳基自熔合金粉末領域實現多項國內技術突破。其研發(fā)的 “超細晶鎳基自熔合金粉末制備技術”,通過控制霧化冷卻速率(≥10?℃/s),使晶粒尺寸≤500nm,強度提升 40%,填補了國內超細晶涂層材料的空白;“低溫燒結鎳基自熔合金粉末” 技術,將燒結溫度從 1100℃降至 950℃,解決了熱敏性基體的涂層難題,獲 2023 年湖南省技術發(fā)明獎。這些技術創(chuàng)新使我國在涂層材料領域擺脫對進口的依賴,例如某航天項目使用該公司粉末后,涂層成本從進口的 8000 元 /kg 降至 3000 元 /kg,且性能提升 15%,相關成果已在《稀有金屬材料與工程》等期刊發(fā)表論文 12 篇,申請發(fā)明專利 8 項。湖南博厚新材料技術團隊可協(xié)助客戶優(yōu)化噴涂參數,如 HVOF 工藝的燃氣流量、噴涂距離等??寡趸嚮匀酆辖鸱勰┒嗑?/p>
博厚新材料鎳基自熔合金粉末的物理性能經過設計:松裝密度控制在 2.6-2.8g/cm3(采用 Hall flowmeter 測試),流動性≤18s/50g(ASTM B213 標準),這種參數組合使得粉末在送粉過程中具有良好的可控性。在等離子噴涂工藝中,該粉末的沉積效率達 65-70%,較常規(guī)粉末提升 15%,且噴涂過程中粉末飛散損失率≤5%。某礦山機械企業(yè)使用該粉末噴涂刮板輸送機鏈條,單班生產效率從 800 噸 / 小時提升至 1050 噸 / 小時,同時粉末消耗量降低 18%,年材料成本節(jié)省約 35 萬元。螺桿鎳基自熔合金粉末廠家現貨博厚新材料鎳基自熔合金粉末在 800℃高溫環(huán)境下仍能保持穩(wěn)定的力學性能,適用于高溫耐磨場景。
博厚新材料與中南大學粉末冶金國家重點實驗室的合作研發(fā),推動了鎳基自熔合金粉末的技術迭代。雙方聯合開發(fā)的 “納米 Al?O?強化鎳基自熔合金粉末”,通過原位生成 50-100nm 的 Al?O?顆粒,使涂層的耐磨性能提升 40%,在礦山破碎機錘頭應用中,壽命從 3000 小時延長至 5200 小時。合作團隊還開發(fā)了 “梯度成分鎳基自熔合金粉末”,通過控制粉末表面至的 Cr 含量梯度(從 20% 漸變至 10%),使涂層與基體的熱應力降低 30%,解決了激光熔覆時的開裂難題,該技術已應用于某航空發(fā)動機葉片修復項目,修復合格率從 60% 提升至 95%。產學研合作模式下,技術從實驗室到產業(yè)化的周期縮短至 1.5 年,遠低于行業(yè)平均的 3 年。
博厚新材料構建的 “粉末選型 - 工藝開發(fā) - 售后優(yōu)化” 一站式服務體系,降低了客戶的技術門檻。服務流程包含:①工況調研(如采集石油泵閥的介質成分、溫度、流速數據);②粉末定制(基于 Thermo-Calc 軟件模擬相圖,優(yōu)化 B、Si 含量);③工藝調試(在客戶現場進行 3 輪噴涂參數優(yōu)化,如激光功率從 2000W 調整至 2200W);④長期跟蹤(每季度采集涂層性能數據,建立壽命預測模型)。某新能源汽車電機殼體噴涂項目中,該團隊通過 2 周時間完成從粉末選型到批量生產的全流程支持,使客戶提前 1 個月實現量產,且涂層散熱效率較預期提升 15%,這種 “交鑰匙” 模式已應用于航空、汽車等 12 個行業(yè)的 300 余個項目。博厚新材料為能源行業(yè)定制的鎳基自熔合金粉末,適用于燃煤電廠的磨煤機部件防護。
博厚新材料研發(fā)的 BH-NiAlBSi 粉末通過調整 Al 含量(8-10%),使熱膨脹系數(11.5×10??/℃)與鈦合金基體(10.5×10??/℃)高度匹配,專門解決異種材料連接的熱應力難題。粉末中的 Al 元素形成 Ni?Al 金屬間化合物,在降低熱膨脹系數的同時,通過擴散焊接與鈦合金基體形成過渡層(厚度 5-10μm),經 300℃熱循環(huán)(20-300℃,1000 次)測試,涂層應變力≤50MPa,遠低于材料的屈服強度。某航空企業(yè)采用該粉末作為鈦合金與不銹鋼的連接涂層,在發(fā)動機壓氣機部件中,經歷 - 50℃至 200℃的溫度交變,未出現界面開裂,且結合強度≥40MPa,滿足航空級可靠性要求。粉末的熱匹配設計還適用于鈦合金與陶瓷、鈦合金與銅等異種材料連接,拓寬了鎳基涂層的應用邊界。博厚新材料為汽車工業(yè)提供的鎳基自熔合金粉末,可提升渦輪增壓器軸承的耐磨壽命??寡趸嚮匀酆辖鸱勰┒嗑?/p>
博厚新材料的納米晶鎳基自熔合金粉末,晶粒尺寸≤100nm,耐磨性提升 60%??寡趸嚮匀酆辖鸱勰┒嗑?/p>
博厚新材料的納米晶鎳基自熔合金粉末通過控制霧化冷卻速率(≥10?℃/s),使晶粒尺寸≤100nm,較傳統(tǒng)微米晶粉末的耐磨性提升 60%。納米晶結構通過 “晶界強化” 與 “位錯阻礙” 雙重機制提升耐磨性:晶界數量隨晶粒細化呈指數增加,阻礙磨粒切削路徑,同時納米晶界的無序結構使位錯滑移距離縮短,塑性變形阻力增大。磨損實驗(干砂 - 橡膠輪法)顯示,該粉末涂層的磨損量為 0.03g/1000 轉,而微米晶涂層為 0.075g/1000 轉。某軸承廠使用該粉末噴涂的滾道,在高速旋轉(1500 轉 / 分鐘)與重載荷(2000N)下,疲勞壽命達 1200 小時,較傳統(tǒng)涂層提升 2.5 倍,且電鏡下觀察到的磨痕深度≤0.5μm,證明納米晶結構對磨損的抑制作用,適用于高精度、高耐磨的軸承、齒輪等部件??寡趸嚮匀酆辖鸱勰┒嗑?/p>