陶瓷金屬化是一項讓陶瓷具備金屬特性的關鍵工藝,其工藝流程嚴謹且細致。起始步驟為陶瓷表面清潔,將陶瓷放入超聲波清洗設備中,使用自用清洗劑,去除表面的油污、灰塵以及其他雜質,確保陶瓷表面潔凈,為后續(xù)工藝提供良好基礎。清潔完畢后,對陶瓷表面進行活化處理,通過化學溶液腐蝕或等離子體處理等方式,在陶瓷表面引入活性基團,增加表面活性,提高金屬與陶瓷的結合力。接下來制備金屬化涂層材料,根據不同的應用需求,選擇合適的金屬(如銅、鎳、銀等),采用物相沉積、化學鍍等方法,制備均勻的金屬化涂層材料。然后將金屬化涂層材料涂覆到陶瓷表面,可使用噴涂、刷涂、真空鍍膜等技術,保證涂層均勻、無漏涂,涂層厚度根據實際需求控制在幾微米到幾十微米不等。涂覆后進行低溫烘干,去除涂層中的溶劑和水分,使涂層初步固化,烘干溫度一般在 60℃ - 100℃ 。高溫促使金屬與陶瓷之間發(fā)生化學反應,形成牢固的金屬化層。為改善金屬化層的性能,可進行后續(xù)的熱處理或表面處理,如退火、鈍化等,進一步提高其硬度、耐腐蝕性等。統(tǒng)統(tǒng)通過各種檢測手段,如硬度測試、附著力測試、耐腐蝕測試等,對金屬化陶瓷的質量進行嚴格檢測 。陶瓷金屬化使陶瓷兼具耐高溫、絕緣性與金屬的導電導熱性,滿足 5G、新能源等領域需求。廣州銅陶瓷金屬化參數
陶瓷金屬化是實現陶瓷與金屬良好連接的重要工藝,有著嚴格的流程規(guī)范。首先對陶瓷基體進行處理,使用金剛石砂輪等工具對陶瓷表面進行打磨,使其平整光滑,然后在超聲波作用下,用酒精、炳酮等有機溶劑清洗,去除表面雜質與油污。接著是金屬化漿料的準備,以鉬錳法為例,將鉬粉、錳粉、玻璃料等按特定比例混合,加入有機載體,通過球磨機長時間研磨,制成均勻細膩、流動性良好的漿料。之后采用絲網印刷或流延法,將金屬化漿料精確轉移到陶瓷表面,確保涂層厚度一致且無氣泡、偵孔等缺陷,涂層厚度一般控制在 15 - 25μm 。涂覆后的陶瓷需進行烘干,在 80℃ - 150℃的烘箱中,去除漿料中的水分和有機溶劑,使?jié){料初步固化。烘干后進入高溫燒結階段,把陶瓷放入高溫氫氣爐內,升溫至 1400℃ - 1600℃ 。在此高溫下,漿料中的玻璃料軟化,促進金屬原子向陶瓷內部擴散,形成牢固的金屬化層。為提高金屬化層的可焊性與耐腐蝕性,通常會進行鍍鎳處理,利用電鍍原理,在金屬化層表面均勻鍍上一層鎳。對金屬化后的陶瓷進行周到檢測,通過金相分析觀察金屬化層與陶瓷的結合情況,用拉力試驗機測試結合強度等,確保產品質量達標 。氧化鋯陶瓷金屬化種類陶瓷金屬化,滿足電力電子領域對材料的特殊性能需求。
隨著電子設備向微型化、集成化發(fā)展,真空陶瓷金屬化扮演關鍵角色。在手機射頻前端模塊,多層陶瓷與金屬化層交替堆疊,構建超小型、高性能濾波器、耦合器等元件。金屬化實現層間電氣連接與信號屏蔽,使各功能單元緊密集成,縮小整體體積。同時,準確控制金屬化工藝確保每層陶瓷性能穩(wěn)定,避免因加工誤差累積導致信號串擾、損耗增加。類似地,物聯網傳感器節(jié)點,將感知、處理、通信功能集成于微小陶瓷封裝內,真空陶瓷金屬化保障內部電路互聯互通,推動萬物互聯時代邁向更高精度、更低功耗發(fā)展階段。
陶瓷金屬化是指通過特定的工藝方法,在陶瓷表面牢固地粘附一層金屬薄膜,從而實現陶瓷與金屬之間的焊接,使陶瓷具備金屬的某些特性,如導電性、可焊性等1。陶瓷具有高硬度、耐磨性、耐高溫、耐腐蝕、高絕緣性等優(yōu)良性能,而金屬具有良好的塑性、延展性、導電性和導熱性4。陶瓷金屬化將兩者的優(yōu)勢結合起來,廣泛應用于電子、航空航天、汽車、能源等領域2。例如,在電子領域用于制備電子電路基板、陶瓷封裝等,可提高電子元件的散熱性能和穩(wěn)定性;在航空航天領域用于制造飛機發(fā)動機葉片、渦輪盤等關鍵部件,以滿足其在高溫、高負荷等極端條件下的使用要求2。常見的陶瓷金屬化工藝包括鉬錳法、鍍金法、鍍銅法、鍍錫法、鍍鎳法、LAP法(激光輔助電鍍)等1。此外,還有化學氣相沉積、溶膠-凝膠法、等離子噴涂、激光熔覆、電弧噴涂等多種實現方法,不同的方法適用于不同的陶瓷材料和應用場景2。陶瓷金屬化的直接覆銅法通過氧化銅共晶液相,實現陶瓷與銅層的冶金結合。
五金表面處理:技術優(yōu)勢篇五金表面處理技術能***提升五金產品性能。從防護層面看,表面處理形成的保護膜,可有效阻擋水分、氧氣和其他腐蝕性物質,大幅延長五金使用壽命。在美觀方面,通過不同工藝,五金能擁有多樣外觀,滿足個性化設計需求。以裝飾性鍍鉻為例,能讓五金呈現明亮光澤,提升產品檔次。在功能性上,表面處理可增強五金的耐磨性、導電性、潤滑性等。如經化學鍍鎳處理的五金,不僅耐磨,還具有良好的導電性,在電子設備和機械零件中廣泛應用,這些優(yōu)勢使五金更好地適應不同工作環(huán)境和使用要求。陶瓷金屬化,作為關鍵技術,開啟陶瓷與金屬協同應用新時代。氧化鋯陶瓷金屬化種類
常用方法有鉬錳法、鍍金法等,適配不同陶瓷材質與應用場景。廣州銅陶瓷金屬化參數
陶瓷金屬化,即在陶瓷表面牢固粘附一層金屬薄膜,實現陶瓷與金屬焊接的技術。隨著科技發(fā)展,尤其是5G時代半導體芯片功率提升,對封裝散熱材料要求更嚴苛,陶瓷金屬化技術愈發(fā)重要。陶瓷材料本身具備諸多優(yōu)勢,如低通訊損耗,因其介電常數使信號損耗小;高熱導率,能讓芯片熱量直接傳導,散熱佳;熱膨脹系數與芯片匹配,可避免溫差劇變時線路脫焊等問題;高結合力,像斯利通陶瓷電路板金屬層與陶瓷基板結合強度可達45MPa;高運行溫度,可承受較大溫度波動,甚至在500-600度高溫下正常運作;高電絕緣性,作為絕緣材料能承受高擊穿電壓。廣州銅陶瓷金屬化參數