我司專注于微弱信號處理技術(shù)的深度開發(fā)與場景化應(yīng)用,憑借深厚的技術(shù)積累,已成功推出多系列失效分析檢測設(shè)備及智能化解決方案。更懂本土半導(dǎo)體產(chǎn)業(yè)的需求,軟件界面貼合工程師操作習(xí)慣,無需額外適配成本即可快速融入產(chǎn)線流程。
性價比優(yōu)勢直擊痛點:相比進口設(shè)備,采購成本降低 30% 以上,且本土化售后團隊實現(xiàn) 24 小時響應(yīng)、48 小時現(xiàn)場維護,備件供應(yīng)周期縮短至 1 周內(nèi),徹底擺脫進口設(shè)備 “維護慢、成本高” 的困境。用國產(chǎn)微光顯微鏡,為芯片質(zhì)量把關(guān),讓失效分析更高效、更經(jīng)濟、更可控! 電路驗證中出現(xiàn)閂鎖效應(yīng)及漏電,微光顯微鏡可定位位置,為電路設(shè)計優(yōu)化提供依據(jù),保障系統(tǒng)穩(wěn)定運行。直銷微光顯微鏡設(shè)備
微光顯微鏡技術(shù)特性差異
探測靈敏度方向:EMMI 追求對微弱光子的高靈敏度(可檢測單光子級別信號),需配合暗場環(huán)境減少干擾;熱紅外顯微鏡則強調(diào)溫度分辨率(部分設(shè)備可達 0.01℃),需抑制環(huán)境熱噪聲。
空間分辨率:EMMI 的分辨率受光學(xué)系統(tǒng)和光子波長限制,通常在微米級;熱紅外顯微鏡的分辨率與紅外波長、鏡頭數(shù)值孔徑相關(guān),一般略低于 EMMI,但更注重大面積熱分布的快速成像。
樣品處理要求:EMMI 對部分遮蔽性失效(如金屬下方漏電)需采用背面觀測模式,可能需要減薄、拋光樣品;
處理要求:熱紅外顯微鏡可透過封裝材料(如陶瓷、塑料)探測,對樣品破壞性較小,更適合非侵入式初步篩查。 顯微微光顯微鏡規(guī)格尺寸但歐姆接觸和部分金屬互聯(lián)短路時,產(chǎn)生的光子十分微弱,難以被微光顯微鏡偵測到,借助近紅外光進行檢測。。
這一技術(shù)不僅有助于快速定位漏電根源(如特定晶體管的柵氧擊穿、PN結(jié)邊緣缺陷等),更能在芯片量產(chǎn)階段實現(xiàn)潛在漏電問題的早期篩查,為采取針對性修復(fù)措施(如優(yōu)化工藝參數(shù)、改進封裝設(shè)計)提供依據(jù),從而提升芯片的長期可靠性。例如,某批次即將交付的電源管理芯片在出廠前的EMMI抽檢中,發(fā)現(xiàn)部分芯片的邊角區(qū)域存在持續(xù)穩(wěn)定的微弱光信號。結(jié)合芯片的版圖設(shè)計與工藝參數(shù)分析,確認該區(qū)域的NMOS晶體管因柵氧層局部厚度不足導(dǎo)致漏電。技術(shù)團隊據(jù)此對這批次芯片進行篩選,剔除了存在漏電隱患的產(chǎn)品,有效避免了缺陷芯片流入市場后可能引發(fā)的設(shè)備功耗異常、發(fā)熱甚至燒毀等風(fēng)險。
挑選適配自身的微光顯微鏡 EMMI,關(guān)鍵在于明確需求、考量性能與評估預(yù)算。先梳理應(yīng)用場景,若聚焦半導(dǎo)體失效分析,需關(guān)注能否定位漏電結(jié)、閂鎖效應(yīng)等缺陷產(chǎn)生的光子;性能層面,探測器是主要考察對象,像 -80℃制冷型 InGaAs 探測器,靈敏度高、波長檢測范圍廣(900 - 1700nm),能捕捉更微弱信號;物鏡分辨率也重要,高分辨率物鏡可清晰呈現(xiàn)微小失效點。操作便捷性也不容忽視,軟件界面友好、具備自動聚焦等功能,能提升工作效率。預(yù)算方面,進口設(shè)備價格高昂,國產(chǎn)設(shè)備性價比優(yōu)勢凸顯,如部分國產(chǎn)品牌雖價格低 30% 以上,但性能與進口相當(dāng),還能提供及時售后。總之,綜合這些因素,多對比不同品牌、型號設(shè)備,才能選到契合自身的 EMMI 。微光顯微鏡支持寬光譜探測模式,探測范圍從紫外延伸至近紅外,能滿足不同材料的光子檢測,適用范圍更廣。
光束誘導(dǎo)電阻變化(OBIRCH)功能與微光顯微鏡(EMMI)技術(shù)常被集成于同一檢測系統(tǒng),合稱為光發(fā)射顯微鏡(PEM,PhotoEmissionMicroscope)。
二者在原理與應(yīng)用上形成巧妙互補,能夠協(xié)同應(yīng)對集成電路中絕大多數(shù)失效模式,大幅提升失效分析的全面性與效率。OBIRCH技術(shù)的獨特優(yōu)勢在于,即便失效點被金屬層覆蓋形成“熱點”,其仍能通過光束照射引發(fā)的電阻變化特性實現(xiàn)精細檢測——這恰好彌補了EMMI在金屬遮擋區(qū)域光信號捕捉受限的不足。
其低噪聲電纜連接設(shè)計,減少信號傳輸過程中的損耗,確保微弱光子信號完整傳遞至探測器??蒲杏梦⒐怙@微鏡成像儀
針對接面漏電,我司微光顯微鏡能偵測其光子定位位置,利于篩選不良品,為改進半導(dǎo)體制造工藝提供數(shù)據(jù)。直銷微光顯微鏡設(shè)備
失效分析是指通過系統(tǒng)的檢測、實驗和分析手段,探究產(chǎn)品或器件在設(shè)計、生產(chǎn)、使用過程中出現(xiàn)故障、性能異?;蚴У母驹?,進而提出改進措施以預(yù)防同類問題再次發(fā)生的技術(shù)過程。它是連接產(chǎn)品問題與解決方案的關(guān)鍵環(huán)節(jié),**在于精細定位失效根源,而非*關(guān)注表面現(xiàn)象。在半導(dǎo)體行業(yè),失效分析具有不可替代的應(yīng)用價值,貫穿于芯片從研發(fā)到量產(chǎn)的全生命周期。
在研發(fā)階段,針對原型芯片的失效問題(如邏輯錯誤、漏電、功耗過高等),通過微光顯微鏡、探針臺等設(shè)備進行失效點定位,結(jié)合電路仿真、材料分析等手段,可追溯至設(shè)計缺陷(如布局不合理、時序錯誤)或工藝參數(shù)偏差,為芯片設(shè)計優(yōu)化提供直接依據(jù);在量產(chǎn)環(huán)節(jié),當(dāng)出現(xiàn)批量性失效時,失效分析能快速判斷是光刻、蝕刻等制程工藝的穩(wěn)定性問題,還是原材料(如晶圓、光刻膠)的質(zhì)量波動,幫助生產(chǎn)線及時調(diào)整參數(shù),降低報廢率;在應(yīng)用端,針對芯片在終端設(shè)備(如手機、汽車電子)中出現(xiàn)的可靠性失效(如高溫環(huán)境下性能衰減、長期使用后的老化失效),通過環(huán)境模擬測試、失效機理分析,可推動芯片在封裝設(shè)計、材料選擇上的改進,提升產(chǎn)品在復(fù)雜工況下的穩(wěn)定性。 直銷微光顯微鏡設(shè)備